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SUMMARY

Poor convergence behavior is usually encountered when numerical computations on turbulent separated
�ow are performed. A design of self-adjusted stepsize concept both in time span and spatial coordinate
systems to achieve faster convergence is demonstrated in this study. The determination of the time
stepsize based on the concept of minimization of residuals using the Bi-CGSTAB algorithm is proposed.
The numerical results show that the time stepsize adjusted by the proposed method indeed improves
the convergence rate for turbulent separated �ow computations using advanced turbulence models in
low-Reynolds number forms. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of the Navier–Stokes equations with higher order turbulence closure models is
of fundamental importance for a wide variety of �ows, turbulent separated �ows in particular.
However, good convergence behavior for the system of these equations is di�cult to achieve.
Slow convergence for such matrix systems has been greatly improved by using the conjugate
gradient-series methods, such as the classical conjugate gradient method [1], the generalized
conjugate gradient method (GCG) [2], the bi-conjugate gradient (Bi-CG) method [3], the
conjugate gradient squared (CG-S) method [4] and the Bi-CGSTAB method [5]. The conjugate
gradient method is one of the most famous iterative methods for solving the matrix system
which is symmetric and positive de�nite. However, for general applications, the matrix systems
are seldom symmetric or positive de�nite. The generalized conjugate gradient (GCG) method
is developed based on the residual minimization for non-symmetric matrix systems, but the
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disadvantages of the GCG method are the possibility of breaking down and usually many
search directions should be stored. The Bi-CG method solves an enlarged linear system with
only one search direction, but encounters cumbersome programming as performing the product
of the transpose of the coe�cient matrix with a vector. Furthermore, the minimization property
of the residual norm no longer exists. In the CGS method, a bilinear form is introduced and
performed in the Bi-CG method and the operation of the transpose of the matrix with a vector
disappears. Furthermore, it is not necessary to solve enlarged systems so the computation work
of the CGS method is not greater than that of the Bi-CG method. Although the CGS method
has been proposed as an attractive variant of the Bi-CG method, it has been observed that the
CGS method may lead to a rather irregular convergence behavior, especially by starting the
iteration close to the solution. The Bi-CGSTAB method is an extension of the CGS method,
however, a more smoothing convergence behavior than CGS method is achieved since the Bi-
CGSTAB method produces much more accurate residual vectors (and, hence, more accurate
solutions). Moreover, the Bi-CGSTAB method is applied to accelerate the convergence rate of
solving the matrix system resulting from Navier–Stokes equations, and is successful to some
degree [6; 7], but the convergence rate needs further acceleration. This work proposes the
additional inclusion of unsteady �ow calculation, i.e. employing the time marching technique
to approach steady state �ow solution. For the unsteady �ow computation, the decreasing of
the time stepsize stablizes the convergence but increases the number of time steps to reach
steady state �ow condition. It implies that the choice of the time stepsize is a key issue in
optimizing the computation time.
Usually, the stability analysis only provides the constraint of time stepsize for linearlized

systems, but suggests no best value of the time stepsize [8; 9]. In most cases, very rough
estimations plus experience can provide the guide of the selection of time stepsize for simple
�ows, but the guide is di�cult for complex separated �ows. Besides, uniform time step-
size is commonly applied for all the computational grid nodes=control volumes, except the
applications of the local-time-step concept [10], which may not be feasible for complex �ows.
For the local-time-step approach, the magnitude of the time stepsize depends on the cell

volume of the computational cell, i.e. smaller time stepsize adopted for smaller control volume.
The applications of the local-time-step method in CFD achieve some degree of improvement,
for example, Saxena and Ravi [11] computed the 3-D supersonic and hyperbolic blunt body
�ows with TVD scheme, Arnone et al. [12] performed the multigrid computation of unsteady
rotor–stator intersection. Mark et al. [13] computed a compressible �ow and heat transfer in a
smooth U-duct with and without rotation using second order accurate Roe’s scheme and three-
level V-cycle multigrid, and Soulis et al. [14] applied the third-order accurate �ux di�erence
upwind scheme to compute incompressible turbulent �ow in turbomachinery.
The proposed method adopted the concept from the Bi-CGSTAB method [5] which is a fast

and smooth convergent variant of the Bi-CG method [3], moreover, the Bi-CGSTAB method
updated the solution vectors such that the two-norm minimization of the residual vectors can
be obtained, thus the disadvantage of the very irregular convergence behavior by the CGS
method can be avoided. Along the same lines, we extended the derivation of the Bi-CGSTAB
method to unsteady state �ow so that the time stepsize of the computation cell at a speci�c
iteration step can be obtained to enforce the residual of the conservative properties of the
computational cell to a minimum value, say zero.
The proposed method has been proved successful in accelerating the convergence rate by

varying time stepsize for predicting the turbulent pipe �ow [15]. The present study intends
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to demonstrate the performance of this numerical scheme for turbulent separated �ow. Two
tested cases are: (1) the turbulent �ow past a 2-D surface-mounted rib with a prescribed inlet
velocity pro�le [16; 17] and (2) the periodic turbulent �ow past a 2-D mounted rib with a
Reynolds number of 12 600 [18]. The advanced turbulence models of Launder–Sharma [19],
Chien [20], Lin and Hwang [21] and Durbin [22] are the applied models with di�erent degrees
of complexity for illustrating the improvement in convergence rate.

2. GOVERNING EQUATIONS

Turbulent �ow computations solve time dependent, Reynolds averaged, incompressible Navier–
Stokes equations and transport equations of turbulent properties. The governing equations in
Cartesian tensor notation can be written as follows:
Continuity Equation:
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=0 (1)

Momentum Equations:

@(�Ui)
@t

+
@�UiUj
@xj

=−@P
@xj

+
@
@xj

[
�
(
@Ui
@xj

+
@Uj
@xi

)
−�uiuj

]
(2)

where Ui is the velocity in the xi direction, P represents the pressure, � is the molecular
viscosity and the Reynolds stress �uiuj can be approximated by adopting Boussinesq approx-
imation within the framework of eddy viscosity, i.e.
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and �t is the turbulent viscosity, �ij is the delta function, and k is the turbulent kinetic energy.
Turbulent properties −� �ui �uj or �t are solved by turbulence models described in following
paragraphs.

2.1. Turbulence property equations in low-reynolds number form

The turbulent properties can be obtained by transport equations and the formulations of tur-
bulent kinetic energy (k) and its dissipation rate (�) by various turbulence models are brie�y
stated as follows:
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Table I. Constants and damping functions for the Launder–Sharma model (LS)
and Chien model (CH).
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The constants and damping functions for the models of Launder–Sharma (LS) [19] and
Chien (CH) [20] in the above equations are listed in Table I.

• Lin’s k − �̃ model [21]
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and the constants and damping functions for Lin’s models in the above equations are
listed in Table II.
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Table II. Constants and damping functions for Lin’s k − �̃ model.
Lin’s k − �̃ Model
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• Durbin’s k − �− 	2 model [22]
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Table III. Constants and damping functions for Durbin’s k − �− 	2 model.
Durbin’s k − �− 	2 model
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The constants and damping functions for Durbin’s models in the above equations are
listed in Table III.

3. NUMERICAL FORMULATION

In order to discretize the governing equations, �nite volume approach with staggered grid ar-
rangements are employed. According to expressions of Patankar [23], the di�erence equations
for every control volume can be expressed in the following form[
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]
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where anb represents the positive coe�cients aE; aW ; aN ; aS which are obtained by a hybrid
scheme for convective terms and a central di�erence scheme for di�usion terms, a∗P is the
sum of these neighbor coe�cients, i.e. a∗P= aE + aW + aN + aS ; vo‘ represents the volume of
the cell-P, �t is the time stepsize at cell-P, � is the density and Su and Sp are the source
terms (Sp60). Therefore, the equations can be casted into[

aP +
� vo‘
�t

]
�k+1p =

∑
anb�k+1nb + cP +

� vo‘
�t

�kp (16)

where ap= a∗p − Sp, cp= c∗p + Su. The di�erence equations can also be represented as the
following matrix form at the kth time step,

(Ak +Dk+1)�k+1 = bk +Dk+1�k (17)

where the vectors �k , �k+1 represent the solutions for the kth and (k+1)th time step respec-
tively, the coe�cient matrix Ak is a penta-diagonal M-matrix and Dk+1 is a positive diagonal
matrix relating the stepsize, i.e. Dk+1 is a positive diagonal matrix and the jth diagonal ele-
ment is diag(Dk+1)j=�j · vo‘j=�tj, where �j, vo‘j and �tj are the density, volume and time
stepsize for the jth control volume respectively. Traditionally, the time stepsize �tj is set
to be a constant, but the time stepsize of the proposed method is di�erent for each control
volume and is determined from the Bi-CGSTAB method due to the residual minimization.

4. TIME STEPSIZE DETERMINATION

It is well known that the small time stepsize will cause slow convergence but large stepsize
will lead to divergence or oscillation for the numerical simulation. Usually, the time stepsize
�t has a restriction according to the stability criteria, and there is little information that can
be assessed to balance faster convergence and instability [8; 9]. A suggestion on the optimal
choice of the time stepsize is of interest.
Before the numerical procedure, the governing equations are transformed to di�erence equa-

tions as a linear system of (Ak +Dk+1)�k+1 = bk +Dk+1�k . The coe�cient matrix Ak and the
right-hand-side vector bk are computed from the kth time step solutions. Matrix Dk+1 is a
diagonal matrix and its elements are evaluated at (k + 1)th step. The residual vector for the
kth time step is de�ned by rk = bk + Ak�k + Dk(�k−1 − �k). Compared to existing iterative
algorithms solving the matrix system, an additional parameter as an adjustable time stepsize
from the analogy of the iterative method of the Bi-CGSTAB [3] algorithm is derived and
described as follows.
Table IV lists two solution procedures of two iterative algorithms to solve Ax= b and (Ak+

Dk+1)�k+1 = bk + Dk+1�k , which conveys the idea determining the time stepsize. Algorithm
I uses the solution procedure for the standard Bi-CGSTAB algorithm while solving a linear
system of the form Ax= b. The initial residual r0 = b−Ax0 is de�ned from the initial guess x0.
According to the algorithm, the next solution vector and residual vector are x1 = x0+�p1+!1s
and r1 = s − !1t respectively, and the parameter !1 is derived from the minimization of
the vector r1. Hence, the solution vector is updated under the restriction of the two-norm
minimization of the corresponding residual vector. Consequently, the (i+ 1)th approximation
solution is updated from the relation xi+1 = xi+ �pi+!i+1s, where the parameter !i+1 makes
the residual norm ‖ri+1‖2 = ‖s−!i+1t‖2 a minimal value.
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Table IV. Comparison of conventional iterative Bi-CGSTAB algorithm
(Algorithm I) with the proposed solution procedure (Algorithm II).

Algorithm I Algorithm II

Solve Ax= b Solve (Ak + Dk+1)xk+1 = bk + Dk+1xk

Give x0 and r0 = b− Ax0 Give x0 and r0 = b0 − A0x0
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�0 = �=!0 = 1, 	0 =p0 = 0 �0 = �=!0 = 1, 	0 =p0 = 0
For i=1; 2; 3; : : : For k =0; 1; 2; : : :
�i =(r̂0; ri−1) �k+1 = (r̂0; rk)

=

�i
�i−1

�
!i−1


=
�k+1
�k

�
!k

pi = ri−1 + 
(pi−1 − !i−1	i−1) pk+1 = rk + 
(pk − !k	k)
	i =Api 	k+1 = (Ak + Dk)pk+1
�=

�i
(r̂0; 	i)

�=
�k+1

(r̂0; 	k+1)
s= ri−1 − �	i s= rk − �	k+1
t=As t=(Ak + Dk)s

!i =
(t; s)
(t; t)

!k+1 =
(t; s)
(t; t)

xi = xi−1 + �pi + !is
If xi is accurate enough then stop Determine Dk+1 from
ri = s− !it (Ak + Dk+1)−1[res xk + Dk(xk − xk−1)]

= �pk+1 + !k+1s
i= i + 1 Solve xk+1 from

endfor (Ak + Dk+1)xk+1 = bk + Dk+1xk
If xi is accurate enough then stop
Compute Ak+1bx+1
res xk+1 = rk+1

= bk−1 − Ak+1xk+1 + Dk+1(xk − xk+1)
k = k + 1

endfor

In the present paper, the concept of minimizing residual is extended to the time span in the
computation of separated �ow, such that the chosen time stepping will enforce the residual to
a minimum value in the next time step. Algorithm II in Table IV is designed to determine the
time stepsize for solving the linear system (Ak +Dk+1)�k+1 = bk +Dk+1�k in each time step,
where Dk+1 involves the stepsize �t but Ak involves no �t. In Algorithm II, the coe�cient
matrix A0 and the vector b0 are obtained from the initial guess x0, and the residual vector
thus can be de�ned as r0 = b0−A0x0. Moreover, Ak; xk ; rk are the coe�cient matrix, solution
vector and residual vector at the kth time step respectively and the linear system

(Ak +Dk+1)xk+1 = bk +Dk+1xk (18)

are solved at the (k + 1)th time step. Similar to the procedure in Algorithm I, the solution
vector xk+1 for the (k+1)th time step follows both xk+1 = xk+�pk+1+!k+1s and Dk+1 needs
to be determined such that the system of Equation (18) can be solved.
Since the residual vectors are de�ned by

rk = bk − Ak xk +Dk(xk−1 − xk) (19)
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and xk is updated to xk+1 by

xk+1 = xk + �pk+1 +!k+1s (20)

Subtracting Equation (18) by (Ak +Dk+1)xk on both sides of equal sign, Equation (18) yields
to

(Ak +Dk+1)(xk+1 − xk)= bk +Dk+1xk − (Ak +Dk+1)xk = bk − Ak xk (21)

Substituting Equation (19) to Equation (21), we have

(Ak +Dk+1)(xk+1 − xk)= rk −Dk(xk−1 − xk) (22)

Combining Equations (20) and (22) we can determine Dk+1 by the following relation

(Ak +Dk+1)(�pk+1 +!k+1s)= rk −Dk(xk−1 − xk) (23)

or the following relation

Dk+1(�pk+1 +!k+1s)= rk −Dk(xk−1 − xk)− Ak(�pk+1 +!k+1s) (24)

Note that Dk+1 is a positive diagonal matrix and diag(Dk+1)j=
�j·vo‘j
�tj

, where �j, vo‘j and
�tj are the density, volume and time stepsize for the jth control volume respectively. Thus
the time stepsize at each control volume at a di�erent instant of time is di�erent, which is
completely di�erent from the conventional methods.

5. RESULTS AND DISCUSSIONS

Two separated �ow cases are computed to demonstrate the performance of the concept of
self-adjusted time-step: (1) the turbulent �ow past a 2-D mounted rib with a prescribed inlet
velocity pro�le [16; 17] (2) the periodic turbulent �ow past a 2-D mounted rib with a Reynolds
number of 12 600 [18]. In order to compare the e�ectiveness of the time stepsize setting, four
di�erent ways of time stepsize �t are set, (1) �t is set to a reasonable large number (�t)max,
(2) �t is chosen as a reasonable small number (�t)min, (3) �t is adjusted by experience or
trial-and-error so that a reasonably good convergence rate and characteristics can be obtained,
which is denoted by (�t)const, (4) �t is adjusted according to the Bi-CGSTAB method and
is con�ned between (�t)max and (�t)min. By the concept of domain of dependence, the
time stepsize (�t)max and (�t)min are evaluated conservatively as (�t)max =L=Uref · 1=10 and
(�t)min =L=Uref · 1=100 respectively, where L and Uref are the travel distance and the reference
velocity in the axial direction respectively.
Figure 1(a) plots the convergence histories of the axial velocity by Chien’s model for the

test case 1. This �gure compares the convergence histories by various choices of time stepsize
setting. The observations are as follows. (1) The residual histories display large oscillations
and lead to poor convergence performance for the time stepsize of (�t)max. (2) If the time
stepsize is reduced to a small constant time stepsize (�t)min, the residual can be smoothly
reduced to 3× 10−5 after 1278 time steps. (3) After many tests runs, the time stepsize of
�t≈ 3:1× (�t)min gives us the fastest convergence rate if the time stepsize is a constant, e.g.
residual is reduced to 3× 10−5 in 815 iterations. The trial-and-error approach to choose the
time stepsize is not a good approach because it is not economical. (4) The proposed concept
of determining the time stepsize using the Bi-CGSTAB method and varying the stepsize at
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Figure 1. Residual histories for tested case 1 using Chien’s model (CH). (a) Velocity U;
(b) turbulent energy dissipation rate.

every cell and at every time step does give the best performance, i.e. fastest convergence rate
among these four histories. Severe oscillations are observed for solving the turbulent energy
dissipation equation using all strategies of time stepsize setting, but the strategy of using
self-adjusted time stepsize exhibits the best rate to achieve the convergence (Figure 1(b)).
Since the proposed method suggests economical time stepsize to achieve the minimum residual
vector for each iteration and individual variables, converged solutions can be reached in a
lower number of time steps.
Among higher order turbulence models, Chien’s model is one of the models exhibiting

reasonable stability and good convergence characteristic. Usually, more complex models need
more experiences and special treats to achieve convergence. Three more turbulence mod-
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Figure 2. Residual histories for tested case 1 using Launder–Sharma’s (LS) model.
(a) Velocity U; (b) turbulent kinetic energy.

els are chosen to demonstrate the e�ectiveness of the concept of self-adjusted time step-
size: one well-known model—Launder and Sharma’s—and two recently developed turbulence
models—Lin’s k − �̃ and Durbin’s k − � − 	2 models. Figure 2(a) shows the convergence
histories of axial velocities computed by the Launder–Sharma model. High residual levels are
observed for large time stepsize (�t)max, and the residual levels cannot be lowered to the
desired criterion. Decreasing the time stepsize to a small value of (�t)min stabilizes the resid-
ual level and yields smooth histories; moreover, the appropriate choice of the time stepsize
as (�t)const ≈ 2:5× (�t)min can improve the convergence rate to some extent. The proposed
method of varying the time stepsize using the Bi-CGSTAB algorithm can further stabilize the
computation and increase the convergence rate slightly. The settings of three time stepsizes
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Figure 3. Residual histories for tested case 1 using Lin’s model. (a) Velocity U;
(b) turbulent kinetic energy.

(�t)min; (�t)const ≈ 2:5× (�t)min and varying time stepsize (�t)var produce convergence per-
formance of roughly the same degree, which implies the high degree of di�culty in achieving
convergence, and small time stepsize is preferred.
More complicated terms have been introduced in Lin’s model, i.e. the inclusion of the

di�usive nature in the pressure di�usion term, the extra source term for �-equation in the
bu�er zone, and the commonly adopted term as format ��t=�(@Ui=@xj@xk)2. Therefore, Lin’s
model not only conforms with the near wall characteristics obtained with the direct numerical
simulation data but also possesses the correct asymptotic behavior in the vicinity of the wall.
However, the complicated terms such as the pressure di�usion term

∏
k in the k-equation

and the extra term
∏
�̃ in �̃-equation cause instabilities and thus large irregularities on the

convergence histories are observed if time stepsize of (�t)max is chosen for axial velocity
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Figure 4. Residual histories for tested case 1 Durbin’s k − � − 	2 model. (a) Velocity U;
(b) turbulent kinetic energy.

(Figure 3(a)). The adoption of self-adjusted time stepsize improves the convergence rate over
the trial-and-error choice of (�t)const ≈ 3:1× (�t)min for Lin’s model.
Since Durbin’s model introduces additional variables 	2 and f, and 	2 needs to be solved

via 	2 transport equation and f to be solved via elliptic relaxation equations. The variable
	2 is a velocity scale and might loosely be regarded as the velocity �uctuation normal to the
streamlines. Also, 	2 behaves as the wall normal component of turbulent intensity near the
surfaces. Impermeable boundaries cause non-local suppression of 	2, and the elliptic relaxation
equation for f is the mathematical representation of non-locality. It is designed for use in
wall-bounded �ows. The di�culty of achieving convergence is obvious due to the increased
number of equations. It is found that the automatic choice of the time stepsize using the
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Figure 5. Residual histories for tested case 2 using Chien’s (CH) model. (a) Velocity U;
(b) turbulent kinetic energy.

Bi-CGSTAB algorithm indeed improves the convergence rate even more e�ectively for this
model with a higher degree of complexity (Figure 4). Furthermore, the convergence rate for
the choice of self-adjusted time stepsize lies between the rates by the choices of (�)const and
(�t)min for the �rst 400 iterations (Figures 4(a) and (b)). However, the larger time stepsize
is allowed for (�t)var setting after 400 time steps, so that the convergence is speeded up at
a later stage.
From the above observations, it can be concluded that the convergence can be achieved

faster by the self-adjusted time stepsize than by the pre-set time stepsize of constant values.
The same conclusion can be drawn even if the advanced and complicated turbulence models
are applied.
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Figure 6. Residual histories for tested case 2 using Launder–Sharma’s model (LS). (a) Velocity U;
(b) mass-conservation ((� t)var) and (c) mass-conservation ((� t)const).

As we move on to test case 2, the computation on periodic turbulent �ow past a 2-D
mounted rib is performed. The convergence rate of this case is much slower than that of
case 1 due to the complexity of �ow-�eld with �ner grid. Figure 5 plots the convergence
histories by Chien’s model for test case 2. In this �gure, the convergence histories for the
stepsize of (�t)max are not shown because it diverges within 200 iterations. The grid size
in test case 2 is �ner than that in test case 1 due to the requirement of y+ less than 0.1
for the �rst grid next to the wall. The convergence is much more di�cult to achieve and
more iteration time steps are needed to obtain the converged �ow-�eld and temperature �eld.
In this case, the choice of self-adjusted time stepsize provides the fastest convergence rate
among the settings of (�t)min, (�t)const = 3:2× (�t)min, and (�t)var. Figure 6 presents the
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Figure 7. Residual histories for tested case 2 using Lin’s model. (a) Velocity U; (b) turbulent
kinetic energy ((� t)var); and (c) turbulent kinetic energy ((� t)min).

residual histories using Launder and Sharma’s model. Severe oscillations for residual of mass-
conservation can be found in Figure 6(b) and no oscillations are observed if the settings of the
time stepsize are (�t)const after 3500 iterations (Figure 6(c)). The self-adjusted method still
provides the fastest convergence rate than the other settings of �xed time stepsize do, but the
oscillations appear in the computation of axial velocity. Moreover, this �gure also suggests
that the spikes can be reduced if the time stepsize is set to a smaller one. Lin’s model
introduces a higher degree of instability so that irregularities on the convergence histories
are observed for axial velocity computation in Figure 7(a). For the computation of turbulent
kinetic energy, the residuals cannot be lowered down to the desired level for all settings of
time stepsize, (�t)var (Figure 7(b)) or (�t)max (Figure 7(c)). Least improvement is achieved
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Figure 8. Residual histories for tested case 2 using Durbin’s k−�−	2 model. (a) Velocity U;
(b) turbulent kinetic energy.

due to the complexity of turbulence models and the high degree of �ow complexity. The
setting of stepsize of (�t)max also leads to quick divergence in test case 2 if Durbin’s model
is applied. The settings of time stepsize as (�t)var and (�t)const (Figure 8(a)) give a few
irregular oscillations with a higher convergence rate for the axial velocity, but the setting
of stepsize (�t)min provides a residual history without spikes and slowest convergence rate
(Figure 8(b)). These computations indicate that the convergence is improved by the adoption
of self-adjusted time stepsize for the complicated turbulence models and complex �ow-�elds,
however, very small gain is obtained with severe oscillations and spikes if Lin’s model is
employed.
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6. CONCLUSIONS

The determination of the time stepsize for each control volume and each time step is de-
rived based on the concept of residuals minimization in the Bi-CGSTAB algorithm, and the
self-adjusted stepsize concept in time span and spatial coordinate systems applied to im-
prove convergence rate is proposed and tested for separated �ow and advanced turbulence
models. The �ow-�elds and temperature �elds are computed numerically for the periodically
turbulent �ow or turbulent �ow past a 2D-mounted rib using advanced turbulent models in
low-Reynolds number forms as Launder–Sharma, Chien, Lin and Durbin’s models. The con-
vergence behaviors of computations demonstrate that this concept not only provides a guide of
optimal determination of the time stepsize but also increases convergence rate for all advanced
turbulence models tested.
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